Copied to
clipboard

G = C423S3order 96 = 25·3

2nd semidirect product of C42 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C423S3, (C4×C12)⋊1C2, D6⋊C4.1C2, (C2×C4).63D6, Dic3⋊C41C2, C6.6(C4○D4), C31(C422C2), C2.8(C4○D12), (C2×C6).17C23, (C2×C12).75C22, (C22×S3).3C22, C22.38(C22×S3), (C2×Dic3).4C22, SmallGroup(96,83)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C423S3
C1C3C6C2×C6C22×S3D6⋊C4 — C423S3
C3C2×C6 — C423S3
C1C22C42

Generators and relations for C423S3
 G = < a,b,c,d | a4=b4=c3=d2=1, ab=ba, ac=ca, dad=ab2, bc=cb, dbd=a2b-1, dcd=c-1 >

Subgroups: 138 in 60 conjugacy classes, 29 normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×Dic3, C2×C12, C22×S3, C422C2, Dic3⋊C4, D6⋊C4, C4×C12, C423S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, C422C2, C4○D12, C423S3

Character table of C423S3

 class 12A2B2C2D34A4B4C4D4E4F4G4H4I6A6B6C12A12B12C12D12E12F12G12H12I12J12K12L
 size 1111122222222121212222222222222222
ρ1111111111111111111111111111111    trivial
ρ2111111-1-11-1-11-1-11111-1-11-1-11-1-1-111-1    linear of order 2
ρ311111111-1-1-1-1-11-1111-11-1-11-1-1-11-1-11    linear of order 2
ρ4111111-1-1-111-11-1-11111-1-11-1-111-1-1-1-1    linear of order 2
ρ51111-11-1-1-111-1-1111111-1-11-1-111-1-1-1-1    linear of order 2
ρ61111-1111-1-1-1-11-11111-11-1-11-1-1-11-1-11    linear of order 2
ρ71111-11-1-11-1-1111-1111-1-11-1-11-1-1-111-1    linear of order 2
ρ81111-11111111-1-1-1111111111111111    linear of order 2
ρ922220-1-2-22-2-22000-1-1-111-111-1111-1-11    orthogonal lifted from D6
ρ1022220-122-2-2-2-2000-1-1-11-111-1111-111-1    orthogonal lifted from D6
ρ1122220-1222222000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222220-1-2-2-222-2000-1-1-1-111-111-1-11111    orthogonal lifted from D6
ρ1322-2-2022i-2i0000000-2-2202i00-2i000-2i002i    complex lifted from C4○D4
ρ142-22-202000-2i2i0000-22-2-2i00-2i002i2i0000    complex lifted from C4○D4
ρ152-2-220200-2i002i0002-2-200-2i00-2i0002i2i0    complex lifted from C4○D4
ρ1622-2-202-2i2i0000000-2-220-2i002i0002i00-2i    complex lifted from C4○D4
ρ172-22-2020002i-2i0000-22-22i002i00-2i-2i0000    complex lifted from C4○D4
ρ182-2-2202002i00-2i0002-2-2002i002i000-2i-2i0    complex lifted from C4○D4
ρ1922-2-20-1-2i2i000000011-1-3i--33-i-33-3-i--3-3i    complex lifted from C4○D12
ρ2022-2-20-12i-2i000000011-13-i--3-3i-3-33i--3-3-i    complex lifted from C4○D12
ρ212-22-20-10002i-2i00001-11-i-33-i--3-3ii-3-33--3    complex lifted from C4○D12
ρ2222-2-20-1-2i2i000000011-13i-3-3-i--3-33-i-3--3i    complex lifted from C4○D12
ρ2322-2-20-12i-2i000000011-1-3-i-33i--33-3i-3--3-i    complex lifted from C4○D12
ρ242-2-220-100-2i002i000-111-33i--33i-3--3-3-i-i-3    complex lifted from C4○D12
ρ252-22-20-10002i-2i00001-11-i--3-3-i-33ii--33-3-3    complex lifted from C4○D12
ρ262-2-220-100-2i002i000-111--3-3i-3-3i--3-33-i-i3    complex lifted from C4○D12
ρ272-22-20-1000-2i2i00001-11i--33i-3-3-i-i--3-33-3    complex lifted from C4○D12
ρ282-2-220-1002i00-2i000-111--33-i-33-i--3-3-3ii-3    complex lifted from C4○D12
ρ292-22-20-1000-2i2i00001-11i-3-3i--33-i-i-33-3--3    complex lifted from C4○D12
ρ302-2-220-1002i00-2i000-111-3-3-i--3-3-i-3--33ii3    complex lifted from C4○D12

Smallest permutation representation of C423S3
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 26 43 17)(2 27 44 18)(3 28 41 19)(4 25 42 20)(5 22 34 16)(6 23 35 13)(7 24 36 14)(8 21 33 15)(9 30 47 39)(10 31 48 40)(11 32 45 37)(12 29 46 38)
(1 23 9)(2 24 10)(3 21 11)(4 22 12)(5 38 20)(6 39 17)(7 40 18)(8 37 19)(13 47 43)(14 48 44)(15 45 41)(16 46 42)(25 34 29)(26 35 30)(27 36 31)(28 33 32)
(2 44)(4 42)(5 40)(6 32)(7 38)(8 30)(9 23)(10 14)(11 21)(12 16)(13 47)(15 45)(17 28)(18 20)(19 26)(22 46)(24 48)(25 27)(29 36)(31 34)(33 39)(35 37)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,43,17)(2,27,44,18)(3,28,41,19)(4,25,42,20)(5,22,34,16)(6,23,35,13)(7,24,36,14)(8,21,33,15)(9,30,47,39)(10,31,48,40)(11,32,45,37)(12,29,46,38), (1,23,9)(2,24,10)(3,21,11)(4,22,12)(5,38,20)(6,39,17)(7,40,18)(8,37,19)(13,47,43)(14,48,44)(15,45,41)(16,46,42)(25,34,29)(26,35,30)(27,36,31)(28,33,32), (2,44)(4,42)(5,40)(6,32)(7,38)(8,30)(9,23)(10,14)(11,21)(12,16)(13,47)(15,45)(17,28)(18,20)(19,26)(22,46)(24,48)(25,27)(29,36)(31,34)(33,39)(35,37)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,43,17)(2,27,44,18)(3,28,41,19)(4,25,42,20)(5,22,34,16)(6,23,35,13)(7,24,36,14)(8,21,33,15)(9,30,47,39)(10,31,48,40)(11,32,45,37)(12,29,46,38), (1,23,9)(2,24,10)(3,21,11)(4,22,12)(5,38,20)(6,39,17)(7,40,18)(8,37,19)(13,47,43)(14,48,44)(15,45,41)(16,46,42)(25,34,29)(26,35,30)(27,36,31)(28,33,32), (2,44)(4,42)(5,40)(6,32)(7,38)(8,30)(9,23)(10,14)(11,21)(12,16)(13,47)(15,45)(17,28)(18,20)(19,26)(22,46)(24,48)(25,27)(29,36)(31,34)(33,39)(35,37) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,26,43,17),(2,27,44,18),(3,28,41,19),(4,25,42,20),(5,22,34,16),(6,23,35,13),(7,24,36,14),(8,21,33,15),(9,30,47,39),(10,31,48,40),(11,32,45,37),(12,29,46,38)], [(1,23,9),(2,24,10),(3,21,11),(4,22,12),(5,38,20),(6,39,17),(7,40,18),(8,37,19),(13,47,43),(14,48,44),(15,45,41),(16,46,42),(25,34,29),(26,35,30),(27,36,31),(28,33,32)], [(2,44),(4,42),(5,40),(6,32),(7,38),(8,30),(9,23),(10,14),(11,21),(12,16),(13,47),(15,45),(17,28),(18,20),(19,26),(22,46),(24,48),(25,27),(29,36),(31,34),(33,39),(35,37)]])

C423S3 is a maximal subgroup of
C42.277D6  C4212D6  C42.95D6  C42.96D6  C42.98D6  C42.104D6  C4218D6  C4219D6  C42.118D6  C42.122D6  C42.132D6  C42.133D6  C42.134D6  C42.137D6  C4222D6  C42.150D6  C42.154D6  S3×C422C2  C42.189D6  C4227D6  C42.165D6  C4230D6  C42.180D6  C423D9  C42⋊C3⋊S3  C62.29C23  C62.38C23  C1222C2  C5⋊(C423S3)  (C4×Dic5)⋊S3  C423D15
C423S3 is a maximal quotient of
(C2×Dic3).9D4  (C22×C4).30D6  C6.(C4⋊D4)  (C22×C4).37D6  (C2×C42).6S3  C427Dic3  (C2×C42)⋊3S3  C423D9  C62.29C23  C62.38C23  C1222C2  C5⋊(C423S3)  (C4×Dic5)⋊S3  C423D15

Matrix representation of C423S3 in GL4(𝔽13) generated by

5000
0500
00106
0073
,
0100
1000
0050
0005
,
1000
0100
00012
00112
,
1000
01200
0001
0010
G:=sub<GL(4,GF(13))| [5,0,0,0,0,5,0,0,0,0,10,7,0,0,6,3],[0,1,0,0,1,0,0,0,0,0,5,0,0,0,0,5],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,12],[1,0,0,0,0,12,0,0,0,0,0,1,0,0,1,0] >;

C423S3 in GAP, Magma, Sage, TeX

C_4^2\rtimes_3S_3
% in TeX

G:=Group("C4^2:3S3");
// GroupNames label

G:=SmallGroup(96,83);
// by ID

G=gap.SmallGroup(96,83);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,55,506,86,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^3=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

Export

Character table of C423S3 in TeX

׿
×
𝔽